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Abstract

We present a novel boundary-aware face alignment al-
gorithm by utilising boundary lines as the geometric struc-
ture of a human face to help facial landmark localisation.
Unlike the conventional heatmap based method and regres-
sion based method, our approach derives face landmarks
from boundary lines which remove the ambiguities in the
landmark definition. Three questions are explored and an-
swered by this work: 1. Why using boundary? 2. How to
use boundary? 3. What is the relationship between bound-
ary estimation and landmarks localisation? Our boundary-
aware face alignment algorithm achieves 3.49% mean error
on 300-W Fullset, which outperforms state-of-the-art meth-
ods by a large margin. Our method can also easily integrate
information from other datasets. By utilising boundary in-
formation of 300-W dataset, our method achieves 3.92%
mean error with 0.39% failure rate on COFW dataset, and
1.25% mean error on AFLW-Full dataset. Moreover, we
propose a new dataset WFLW to unify training and testing
across different factors, including poses, expressions, illu-
minations, makeups, occlusions, and blurriness. Dataset
and model will be publicly available at https://wywu.
github.io/projects/LAB/LAB.html

1. Introduction

Face alignment, which refers to facial landmark detec-
tion in this work, serves as a key step for many face appli-
cations, e.g., face recognition [76], face verification [49, 50]
and face frontalisation [21]. The objective of this paper
is to devise an effective face alignment algorithm to han-
dle faces with unconstrained pose variation and occlusion
across multiple datasets and annotation protocols.

∗This work was done during an internship at SenseTime Research.
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Figure 1: The first column shows the face images from different
datasets with different number of landmarks. The second column
illustrates the universally defined facial boundaries estimated by
our methods. With the help of boundary information, our approach
achieves high accuracy localisation results across multiple datasets
and annotation protocols, as shown in the third column.

Different to face detection [46] and recognition [76],
face alignment identifies geometry structure of human face
which can be viewed as modeling highly structured out-
put. Each facial landmark is strongly associated with a
well-defined facial boundary, e.g., eyelid and nose bridge.
However, compared to boundaries, facial landmarks are
not so well-defined. Facial landmarks other than corners
can hardly remain the same semantical locations with large
pose variation and occlusion. Besides, different annotation
schemes of existing datasets lead to a different number of
landmarks [29, 5, 67, 31] (19/29/68/194 points) and anno-
tation scheme of future face alignment datasets can hardly
be determined. We believe the reasoning of a unique facial
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structure is the key to localise facial landmarks since human
face does not include ambiguities.

To this end, we use well-defined facial boundaries to rep-
resent the geometric structure of the human face. It is easier
to identify facial boundaries comparing to facial landmarks
under large pose and occlusion. In this work, we repre-
sent facial structure using 13 boundary lines. Each facial
boundary line can be interpolated from a sufficient number
of facial landmarks across multiple datasets, which will not
suffer from inconsistency of the annotation schemes.

Our boundary-aware face alignment algorithm contains
two stages. We first estimate facial boundary heatmaps and
then regress landmarks with the help of boundary heatmaps.
As noticed in Fig. 1, facial landmarks of different annota-
tion schemes can be derived from boundary heatmaps with
the same definition. To explore the relationship between
facial boundaries and landmarks, we introduce adversarial
learning ideas by using a landmark-based boundary effec-
tiveness discriminator. Experiments have shown that the
better quality estimated boundaries have, the more accu-
rate landmarks will be. The boundary heatmap estimator,
landmark regressor, and boundary effectiveness discrimina-
tor can be jointly learned in an end-to-end manner.

We used stacked hourglass structure [36] to estimate fa-
cial boundary heatmap and model the structure between
facial boundaries through message passing [11, 64] to in-
crease its robustness to occlusion. After generating facial
boundary heatmaps, the next step is deriving facial land-
marks using boundaries. The boundary heatmaps serve as
structure cue to guide feature learning for the landmark
regressor. We observe that a model guided by ground
truth boundary heatmaps can achieve 76.26% AUC on
300W [40] test while the state-of-the-art method [15] can
only achieve 54.85%. This suggests the richness of infor-
mation contained in boundary heatmaps. To fully utilise
the structure information, we apply boundary heatmaps at
multiple stages in the landmark regression network. Our
experiment shows that the more stages boundary heatmaps
are used in feature learning, the better landmark prediction
results we will get.

We evaluate the proposed method on three popular face
alignment benchmarks including 300W [40], COFW [5],
and AFLW [29]. Our approach significantly outperforms
previous state-of-the-art methods by a large margin. 3.49%
mean error on 300-W Fullset, 3.92% mean error with 0.39%
failure rate on COFW and 1.25% mean error on AFLW-
Full dataset respectively. To unify the evaluation, we pro-
pose a new large dataset named Wider Facial Landmarks
in-the-wild (WFLW) which contain 10, 000 images. Our
new dataset introduces large pose, expression, and occlu-
sion variance. Each image is annotated with 98 landmarks
and 6 attributes. Comprehensive ablation study demon-
strates the effectiveness of each component.

2. Related Work
In the literature of face alignment, besides classic meth-

ods (ASMs [35, 23], AAMs [13, 42, 34, 26], CLMs [30,
43] and Cascaded Regression Models [7, 5, 59, 8, 73,
74, 18]), recently, state-of-the-art performance has been
achieved with Deep Convolutional Neural Networks (DC-
NNs). These methods mainly fall into two categories, i.e.,
coordinate regression model and heatmap regression model.

Coordinate regression models directly learn the map-
ping from the input image to the landmark coordinates vec-
tor. Zhang et al. [71] frames the problem as a multi-task
learning problem, learns landmark coordinates and predicts
facial attributes at the same time. MDM [52] is the first
end-to-end recurrent convolutional system for face align-
ment from coarse to fine. TSR [32] splits face into several
parts to ease the parts variations and regresses the coordi-
nates of different parts respectively. Even though coordi-
nate regression models have the advantage of explicit infer-
ence of landmark coordinates without any post-processing.
Nevertheless, they are not performing as well as heatmap
regression models.

Heatmap regression models, which generate likeli-
hood heatmaps for each landmark respectively, have re-
cently achieved state-of-the-art performance in face align-
ment. CALE [4] is a two-stage convolutional aggregation
model to aggregate score maps predicted by detection stage
along with early CNN features for final heatmap regression.
Yang et al. [61] uses a two parts network, i.e., a supervised
transformation to normalise faces and a stacked hourglass
network [36] to get prediction heatmaps. Most recently,
JMFA [15] achieves state-of-the-art accuracy by leveraging
stacked hourglass network [36] for multi-view face align-
ment and demonstrates better than the best three entries of
the last Menpo Challenge [67].

Since boundary detection was set as one of the most
fundamental problems in computer vision and there have
emerged a large number of materials [57, 53, 45, 66, 44].
It has been proved efficient in vision tasks as segmenta-
tion [33, 28, 22] and object detection [37, 51, 38]. In face
alignment, boundary information demonstrates especial im-
portance because almost all of the landmarks are defined ly-
ing on the facial boundaries. However, as far as we know,
in face alignment task, no work before has investigated the
use of boundary information from an explicit perspective.

The recent advance in human pose estimation partially
inspires our method of boundary heatmaps estimation.
Stacked hourglass network [36] achieves compelling accu-
racy with a bottom-up, top-down design which endows the
network with capabilities of obtaining multi-scale informa-
tion. Message passing [11, 64] has shown great power in
structure modeling of human joints. Recently, adversarial
learning [9, 10] is adopted to further improve the accuracy
of estimated human pose under heavy occlusion.
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Figure 2: Overview of our Boundary-Aware Face Alignment framework. (a) Boundary heatmap estimator, which based on hourglass
network is used to estimate boundary heatmaps. Message passing layers are introduced to handle occlusion. (b) Boundary-aware landmarks
regressor is used to generate the final prediction of landmarks. Boundary heatmap fusion scheme is introduced to incorporate boundary
information into the feature learning of regressor. (c) Boundary effectiveness discriminator, which distinguishes “real” boundary heatmaps
from “fake”, is used to further improve the quality of the estimated boundary heatmaps.

3. Boundary-Aware Face Alignment

As mentioned in the introduction, landmarks have diffi-
culty in presenting accurate and universal geometric struc-
ture of face images. We propose facial boundary as geo-
metric structure representation and help landmarks regres-
sion problem in the end. Boundaries are detailed and well-
defined structure descriptions, which are consistent across
head poses and datasets. They are also closely related to
landmarks since most of the landmarks are located along
boundary lines.

Other choices are also available for geometric structure
representations. Recent works [32, 48, 19] has adopted fa-
cial parts to aid face alignment tasks. However, facial parts
are too coarse thus not as powerful as boundary lines. An-
other choice would be face parsing results. Face parsing
leads to disjoint facial components which needs the bound-
aries of each component form a closed loop. However,
some facial organs such as nose are naturally blended into
the whole face thus are inaccurate to be defined as separate
parts. On the contrary, boundary lines are not necessary to
form a closed loop, which is more flexible in representing
geometric structure. Experiments in Sec 4.2 have shown
that boundary lines are the best choice to aid landmark co-
ordinates regression.

The detailed configuration of our proposed Boundary-
Aware Face Alignment framework is illustrated in Fig. 2.
It is composed of three closely related components:
Boundary-Aware Landmark Regressor, Boundary Heatmap
Estimator and Landmark-Based Boundary Effectiveness
Discriminator. Boundary-Aware Landmark Regressor in-
corporates boundary information in a multi-stage manner to
predict landmark coordinates. Boundary Heatmap Estima-
tor produces boundary heatmaps as face geometric struc-
ture. Since boundary information is used heavily, the qual-
ity of boundary heatmaps is crucial for final landmark re-
gression. We introduce adversarial learning idea [20] by
proposing Landmark-Based Boundary Effectiveness Dis-

criminator, which is paired with the Boundary Heatmap Es-
timator. This discriminator can further improve the quality
of boundary heatmaps and lead to better landmark coordi-
nates prediction.

3.1. Boundary-aware landmarks regressor

In order to fuse boundary line into feature learning, we
transform landmarks to boundary heatmaps to aid the learn-
ing of feature. The responses of each pixel in boundary
heatmap are decided by its distance to the corresponding
boundary line. As shown in Fig. 3, the details of boundary
heatmap are defined as follows.

Given a face image I , denote its ground truth annotation
by L landmarks as S = {sl}Ll=1 . K subsets Si ⊂ S are
defined to represent landmarks belongs to K boundaries re-
spectively, such as upper left eyelid and nose bridge. For
each boundary, Si is interpolated to get a dense boundary
line. Then a binary boundary map Bi, the same size as I , is
formed by setting only points on the boundary line to be 1,
others 0. Finally, a distance transform is performed based
on each Bi to get distance map Di. We use a gaussian ex-
pression with standard deviation σ to transform the distance
map to ground-truth boundary heatmap Mi. 3σ is used to
threshold Di to make boundary heatmaps focus more on
boundary areas. In practice, the length of the ground-truth
boundary heatmap side is set to a quarter of the size of I for
computation efficiency.

Mi(x, y) =

{
exp(−Di(x,y)

2

2σ2 ), if Di(x, y) < 3σ

0, otherwise
(1)

In order to fully utilise the rich information contained
in boundary heatmaps, we propose a multi-stage boundary
heatmap fusion scheme. As illustrated in Fig. 2, A four-
stage res-18 network is adopted as our baseline network.
Boundary heatmap fusion is conducted at the input and ev-
ery stage of the network. Comprehensive results in Sec. 4.2
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Figure 3: An illustration of the process of ground truth heatmap
generation. Each row represents the process of one specific facial
boundary, i.e., facial outer contour, left eyebrow, right eyebrow,
nose bridge, nose boundary, left/right upper/lower eyelid and up-
per/lower side of upper/lower lip.

Boundary 
Heatmaps

Input Feature 
Maps

Element‐wise Dot Product
Refined 

Feature Maps

Feature Map Fusion
S

Concatenation Sigmoid

Down 
Sampling

N*32*32

13*64*64

(N+13)*32*32

N*32*32

(N+N)*32*32

Concatenation
N*32*32

13*32*32

M

F H

T

Figure 4: An illustration of the feature map fusion scheme.
Boundary cues and input feature maps are fused together to get
a refined feature with the usage of a hourglass module.

have shown that the more fusion we conducted to the base-
line network, the better performance we can get.
Input image fusion. To fuse boundary heatmap M with
input image I , the fused input H is defined as:

H = I ⊕ (M1 ⊗ I)⊕ ...⊕ (MT ⊗ I) (2)

where ⊗ represents the element-wise dot product operation
and ⊕ represents channel-wise concatenation. The above
design makes fused input focus only on detailed texture
around boundaries. Thus most background and texture-less
face regions are ignored which greatly enhance the effec-
tiveness of input. The original input is also concatenated
to the fused ones to keep other valuable information in the
original image.
Feature map fusion. Similar to above, to fuse boundary
heatmap M with feature map F , the fused feature map H
is defined as:

H = F ⊕ (F ⊗ T (M ⊕ F )) (3)

Since the number of channels of M equals to the number
of pre-defined boundaries, which is constant. A transform
function T is necessary to convert M to have the same
channels with F . We choose hourglass structure subnet
as T to keep feature map size. Down-sampling and up-
sampling are performed symmetrically. Skip connections
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Figure 5: An illustration of the effectiveness of message passing
and adversarial learning. With the message passing and adversar-
ial learning addition, the quality of the estimated boundary is well
improved to be more and more plausible and focused.

are used to combine multi-scale information. Then a sig-
moid layer normalises the output range to [0, 1]. Another
simple choice would be consecutive convolutional layers
with stride equals to one, which covers relatively local ar-
eas. Experiments in Sec. 4.2 have demonstrated the superi-
ority of hourglass structure. Details of feature map fusion
subnet are illustrated in Fig. 4.

Since boundary heatmaps are used heavily in landmarks
coordinates regression. The quality of boundary heatmaps
is essential to the prediction accuracy. By fusing ground
truth boundary heatmaps, our method can achieve 76.26%
AUC on 300-W test, comparing to the state-of-art result
54.85%. Based on this experiment, in the following sec-
tions, several methods will be introduced to improve the
quality of generated boundary heatmaps. Experiment in
ablation study also shows the consistent performance gain
with better heatmap quality.

3.2. Boundary heatmap estimator

Following previous work in face alignment [15, 61] and
human pose [36, 12, 63], we use stacked hourglass as the
baseline of boundary heatmap estimator. Mean square er-
ror (MSE) between generated and groundtruth boundary
heatmaps is optimized. However, as demonstrated in Fig. 5,
when heavy occlusions happen, the generated heatmaps al-
ways suffer from the noisy and multi-mode response, which
has also been mentioned in [9, 12].

In order to relieve the problem caused by occlusion, we
introduce message passing layers to pass information be-
tween boundaries. This process is visualised in Fig. 6. Dur-
ing occlusion, visible boundaries can provide help to oc-
cluded ones according to face structure. Intra-level mes-
sage passing is used at the end of each stack to pass infor-
mation between different boundary heatmaps. Thus, infor-
mation can be passed from visible boundaries to occluded
ones. Moreover, since different stacks of hourglass focus on
different aspects of face information. Inter-level message
passing is adopted to pass message from lower stacks to
the higher stacks to keep the quality of boundary heatmaps
when stacking more hourglass subnets.

We implemented message passing following [11]. In this
implementation, the feature map at the end of each stack
needs be divided into K branches, where K is the number
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Figure 6: An illustration of message pass scheme. A bi-direction
tree structure is used for intra-level message passing. Inter-level
message is passed between adjacent stacks from lower to higher.

of boundaries, each represents a type of boundary feature
map. This requirement demonstrates the advantage of our
boundary heatmaps compared with landmark heatmaps [15,
61] for the small and constant number K of them. Thus,
the computational and parameter cost of message passing
layers within boundaries is small while it is not practical for
message passing within 68 or even 194 landmarks.

3.3. Boundary effectiveness discriminator

In structured boundary heatmap estimator, mean squared
error (MSE) is used as the loss function. However, min-
imizing MSE sometimes makes the prediction look blurry
and implausible. This regression-to-the-mean problem is a
well-known fact in the literature of super-resolution [41].
It damages the learning of regression network when bad
boundary heatmaps are generated.

However, in our framework, the hard-to-define term
“quality” of heatmaps has a very clear evaluation metric.
If helping to produce accurate landmark coordinates, the
boundary heatmap has a good quality. According to this, we
propose a landmark based boundary effectiveness discrimi-
nator to decide the effectiveness of the generated boundary
heatmaps. For a generated boundary heatmap M̂ (all index i
such as M̂i is omitted for the simplicity of notation), denote
its corresponding generated landmark coordinates set as Ŝ,
the ground-truth distance matric map as Dist. The ground
truth dfake of discriminator D that determines whether the
generated boundary heatmap is fake can be defined as

dfake(M̂, Ŝ) =

{
0, Prs∈Ŝ(Dist(s) < θ) < δ

1, otherwise
(4)

Where θ is the distance threshold to ground truth bound-
ary and δ is the probability threshold. This discriminator
predicts whether most generated corresponding landmarks
would be close to the ground truth boundary.

Following [9, 10], we introduce the idea of adversarial
learning by pairing the boundary effectiveness discrimina-
tor D and the boundary heatmaps estimator G. The loss of

D can be expressed as:

LD = −(E[logD(M)] + E[log(1− |D(G(I))− dfake|)])
(5)

Where M is the ground truth boundary heatmap. The dis-
criminator learns to predict ground truth boundary heatmap
as one while predict generated boundary heatmap according
to dfake.

With effectiveness discriminator, the adversarial loss can
be expressed as:

LA = E[log(1−D(G(I)))] (6)

Thus, the estimator is optimised to fool D by giving more
plausible and high-confidence maps that will benefit the
learning of regression network.

The following pseudo-code shows the training process
of the whole methods.

Algorithm 1 The training pipeline of the our method.

Require: Training image I , the corresponding ground-
truth boundary heatmaps M and landmark coordinates
S, the generation networkG , the regression networkR
and the discrimination network D.

1: while the accuracy of landmarks predicted by R in val-
idation set stops do

2: Forward G by M̂ = G(I) and optimize G by mini-
mizing ‖M̂ −M‖22 +LA where LA is defined in Eq.6;

3: Forward D by d̂real = D(M) and optimize D by
minimizing the first term of LD defined in Eq.5;

4: Forward D by d̂fake = D(M̂) and optimize D by
minimizing the second term of LD defined in Eq.5;

5: Forward R by Ŝ = R(I, M̂) and optimize R by
minimizing ‖Ŝ − S‖22;

6: end while

3.4. Cross-Dataset Face Alignment

Recently, together with impressive progress of algo-
rithms for face alignment, various benchmarks have also
been released, e.g., LFPW [3], AFLW [29] and 300-W [40].
However, because of the gap between annotation schemes,
these datasets can hardly be jointly used. Models trained on
one specific dataset perform poorly on recent in-the-wild
test sets.

However, introduction of an annotation transfer compo-
nent [47, 72, 68, 54] will bring new problems. From a
new perspective, we take facial boundaries as an all-purpose
middle-level face geometry representation. Facial bound-
aries naturally unify different landmark definitions with
enough landmarks. And it can also be applied to help train-
ing landmarks regressor with any specific landmarks defini-
tion. The cross-dataset capacity is an important by-product
of our methods. Its effectiveness is evaluated in Sec. 4.1.



4. Experiments
Datesets. We conduct evaluation on four challenging

datasets including 300W [40], COFW [5], AFLW [29] and
WFLW which is annotated by ourself.

300W [40] dataset: 300W is currently the most widely-
used benchmark dataset. We regard all the training samples
(3148 images) as the training set and perform testing on (i)
full set and (ii) test set. (i) Full set contains 689 images and
is split into common subset (554 images) and challenging
subsets (135 images). (ii) Test set is the private test-set used
for the 300W competition which contains 600 images.

COFW [5] dataset consists of 1345 images for training
and 507 faces for testing which are all occluded to different
degrees. Each COFW face originally has 29 manually an-
notated landmarks. We also use the test set which has been
re-annotated by [19] with 68 landmarks annotation scheme
to allow easy comparison to previous methods.

AFLW [29] dataset: AFLW contains 24386 in-the-wild
faces with large head pose up to 120◦ for yaw and 90◦ for
pitch and roll. We follow [73] to adopt three settings on
our experiments: (i) AFLW-Full: 20000 and 4386 images
are used for training and testing respectively. (ii) AFLW-
Frontal: 1314 images are selected from 4386 testing images
for evaluation on frontal faces.

WFLW dataset: In order to facilitate future research
of face alignment, we introduce a new facial dataset base
on WIDER Face [62] named Wider Facial Landmarks in-
the-wild (WFLW), which contains 10000 faces (7500 for
training and 2500 for testing) with 98 fully manual anno-
tated landmarks. Apart from landmark annotation, out new
dataset includes rich attribute annotations, i.e., occlusion,
pose, make-up, illumination, blur and expression for com-
prehensive analysis of existing algorithms. Compare to pre-
vious dataset, faces in the proposed dataset introduce large
variations in expression, pose and occlusion. We can simply
evaluate the robustness of pose, occlusion, and expression
on proposed dataset instead of switching between multiple
evaluation protocols in different datasets. The comparison
of WFLW with popular benchmarks is illustrated in the sup-
plementary material.
Evaluation metric. We evaluate our algorithm using stan-
dard normalised landmarks mean error and Cumulative Er-
rors Distribution (CED) curve. In addition, two further
statistics i.e. the area-under-the-curve (AUC) and the fail-
ure rate for a maximum error of 0.1 are reported. Because of
various profile face on AFLW [29] dataset, we follow [73]
to use face size as the normalising factor. For other dataset,
we follow MDM [52] and [40] to use outer-eye-corner dis-
tance as the “inter-ocular” normalising factor. Specially, to
compare with the results that reported to be normalised by
“inter-pupil” (eye-centre-distance) distance, we report our
results with both two normalising factors on Table 1.
Implementation details. All training images are cropped

Method Common Challenging FullsetSubset Subset
Inter-pupil Normalisation

RCPR [6] 6.18 17.26 8.35
CFAN [70] 5.50 16.78 7.69

ESR [7] 5.28 17.00 7.58
SDM [58] 5.57 15.40 7.50
LBF [39] 4.95 11.98 6.32

CFSS [73] 4.73 9.98 5.76
3DDFA [75] 6.15 10.59 7.01
TCDCN [71] 4.80 8.60 5.54
MDM [52] 4.83 10.14 5.88
RCN [24] 4.67 8.44 5.41
RAR [56] 4.12 8.35 4.94

DVLN [54] 3.94 7.62 4.66
TSR [32] 4.36 7.56 4.99

LAB (4-stack) 4.20 7.41 4.92
LAB (8-stack) 3.42 6.98 4.12
LAB+Oracle 2.57 4.72 2.99

Inter-ocular Normalisation
PCD-CNN [2] 3.67 7.62 4.44

SAN [60] 3.34 6.60 3.98
LAB (4-stack) 2.98 5.19 3.49
LAB (8-stack) 2.43 4.85 2.93
LAB+Oracle 1.85 3.28 2.13

Table 1: Mean error (%) on 300-W Common Subset, Challeng-
ing Subset and Fullset (68 landmarks).

Method AUC Failure Rate (%)
Deng et al. [14] 0.4752 5.5
Fan et al. [16] 0.4802 14.83

DenseReg + MDM [1] 0.5219 3.67
JMFA [15] 0.5485 1.00

LAB 0.5885 0.83
LAB+Oracle 0.7626 0.00

Table 2: Mean error (%) on 300-W testset (68 landmarks). Ac-
curacy is reported as the AUC and the Failure Rate.

and resized to 256 × 256 according to provided bound-
ing boxes. The estimator is stacked four times if not spe-
cially indicated in our experiment. For ablation study, the
estimator is stacked two times due to the consideration of
time and computation cost. All our models are trained with
Caffe [25] on 4 Titan X GPUs. Note that all testing im-
ages are cropped and resized according to provided bound-
ing boxes without any spatial transformation for fair com-
parison with other methods. For the limited space of paper,
we report all of the training details and experiment settings
in our supplementary material.

4.1. Comparison with existing approaches

4.1.1 Evaluation on 300W

We compare our approach against the state-of-the-art meth-
ods on 300W Fullset. The results are shown in Table 1.



Metric Method Testset Pose Subset Expression Subset Illumination Subset Make-Up Subset Occlusion Subset Blur Subset

Mean Error (%)

ESR [7] 11.13 25.88 11.47 10.49 11.05 13.75 12.20
SDM [58] 10.29 24.10 11.45 9.32 9.38 13.03 11.28
CFSS [73] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DVLN [54] 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LAB 5.27 10.24 5.51 5.23 5.15 6.79 6.32

Failure Rate (%)

ESR [7] 35.24 90.18 42.04 30.80 38.84 47.28 41.40
SDM [58] 29.40 84.36 33.44 26.22 27.67 41.85 35.32
CFSS [73] 20.56 66.26 23.25 17.34 21.84 32.88 23.67
DVLN [54] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB 7.56 28.83 6.37 6.73 7.77 13.72 10.74

AUC

ESR [7] 0.2774 0.0177 0.1981 0.2953 0.2485 0.1946 0.2204
SDM [58] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398
CFSS [73] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037
DVLN [54] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973

LAB 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630

Table 3: Evaluation of LAB and several state-of-the-arts on Testset and 6 typical subsets of WFLW (98 landmarks).

Method Mean Error (%) Failure Rate (%)
Human 5.6 -

RCPR [6] 8.50 20.00
HPM [19] 7.50 13.00
CCR [17] 7.03 10.9

DRDA [69] 6.46 6.00
RAR [56] 6.03 4.14
SFPD [55] 6.40 -

DAC-CSR [18] 6.03 4.73
LAB w/o boundary 5.58 2.76

LAB 3.92 0.39

(a) Mean error (%) on COFW-29 testset.

Method AFLW-Full (%) AFLW-Frontal (%)
CDM [65] 5.43 3.77
RCPR [6] 3.73 2.87
ERT [27] 4.35 4.35
LBF [39] 4.25 2.74

CFSS [73] 3.92 2.68
CCL [74] 2.72 2.17
TSR [32] 2.17 -

DAC-OSR [18] 2.27 1.81
LAB w/o boundary 1.85 1.62

LAB 1.25 1.14

(b) Mean error (%) on AFLW testset.

Table 4: Cross-dataset evaluation on COFW and AFLW.

Our method significantly outperforms previous methods by
a large margin. Note that, our method achieves 6.98% mean
error on the Challenging subset which reflects the effective-
ness of handling large head rotation and exaggerated ex-
pressions. Apart from 300W Fullset, we also show our re-
sults on 300W Testset in Table 2. Our method performs best
among all of the state-of-the-art methods.

To verify the effectiveness and potential of boundary
maps, we use ground truth boundary in the proposed
method and report results named “LAB+oracle” which sig-
nificantly outperform all the methods. The results demon-
strate the effectiveness of boundary information and show
great potential performance gain if the boundary informa-
tion can be well captured.

4.1.2 Evaluation on WFLW

For comprehensively evaluating the robustness of our
method, we report mean error, failure rate and AUC on the
Testset and six typical subsets of WFLW on Table. 3. These
six subsets were split from Testset by the provided attribute
annotations. Though reasonable performance is obtained,
there is illustrated to be still a lot of room for improvement
for the extreme diversity of samples on WFLW, e.g., large
pose, exaggerated expressions and heavy occlusion.

4.1.3 Cross-dataset evaluation on COFW and AFLW

COFW-68 is produced by re-annotating COFW dataset with
68 landmarks annotation scheme to perform cross-dataset
experiments by [19]. Fig. 7 shows the CED curves of
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Figure 7: CED for COFW-68 testset (68 landmarks). Train set
(in parentheses), mean error and failure rate are also reported.

our method against state-of-the-art methods on the COFW-
68 [19] dataset. Our model outperforms previous results
with a large margin. We achieve 4.62% mean error with
2.17% failure rate. The failure rate is significantly reduced
by 3.75%, which indicates the robustness of our method to
handle occlusions.

In order to verify the capacity of handling cross-dataset
face alignment of our method, we use boundary heatmaps
estimator trained on 300W Fullset which has no overlap
with COFW and AFLW dataset and compare the perfor-
mance with and without using boundary information fusion
(“LAB w/o boundary”). The results are reported in Table 4.
The performance of previous methods without using 300-
W datasets is also attached as a reference. There is a clear
boost between our method without and with using boundary
information. Thanks to the generalization of facial bound-
aries, the estimator learned on 300W can be conveniently
used to supply boundary information for coordinate regres-
sion on COFW-29 [5] and AFLW [29] dataset, even though
these datasets have different annotation protocols.



Moreover, our method uses boundary information
achieves 29%, 32% and 29% relative performance improve-
ment over the baseline method (“LAB without boundary”)
on COFW-29, AFLW-Full and AFLW-Frontal respectively.
Since COFW covers different level of occlusion and AFLW
has significant view changes and challenging shape vari-
ations, the results emphasise the robustness brought by
boundary information to occlusion, pose and shape varia-
tions. More qualitative results are demonstrated in our sup-
plementary material.

4.2. Ablation study

Our framework consists of several pivotal components,
i.e., boundary information fusion, message passing and ad-
versarial learning. In this section, we validate their effec-
tiveness within our framework on the 300W Challenging
Set and WFLW Dataset. Based on the baseline res-18 net-
work (BL), we analyse each proposed component, i.e., with
the baseline hourglass boundary estimator (“HBL”), mes-
sage passing (“MP”), and adversarial learning (“AL”), by
comparing their mean error and failure rate. The overall
results are shown in Fig. 8.

Boundary information is chosen as geometric struc-
ture representation in our work. We verify the potential of
other structure information as well, i.e., facial parts gaus-
sian (“FPG”) and face parsing results (“FP”). We report the
landmarks accuracy with oracle results in Table 5 using dif-
ferent structure information. It can be observed easily that
boundary map (“BM”) is the most effective one.

Boundary information fusion is one of the key steps in
our algorithm. We can fuse boundary information at dif-
ferent levels for the regression network. As indicated in
Table 6, our final model that fuses boundary information in
all four levels improves mean error from 7.12% to 6.13%.
To evaluate the relationship between the quantity of bound-
ary information fusion and the final prediction accuracy, we
vary the number of fusion levels from 1 to 4 and report
the mean error results in Table 6. It can be observed that
performance is improved consistently by fusing boundary
heatmaps at more levels.

Method BL BL+FPG BL+FP BL+BM
Mean Error 7.12 5.25 4.16 3.28

Table 5: Mean error (%) on 300W Challenging Set for evaluation
the potential of boundary map as the facial structure information.

Method BL BL+L1 BL+L1&2 BL+L1&2&3 BL+L1&2&3&4
Mean Error 7.12 6.56 6.32 6.19 6.13

Table 6: Mean error (%) on 300W Challenging Subset for vari-
ous fusion levels.

To verify the effectiveness of the fusion scheme shown in
Fig. 4, we report the results of mean error on several settings
in Table 7, i.e., the baseline res-18 network (“BL”), hour-

Method BL BL+HG/B BL+CL BL+HG
Mean Error 7.12 6.95 6.24 6.13

Table 7: Mean error (%) on 300W Challenging Set for different
settings of boundary fusion scheme.

Method HBL HBL+MP HBL+MP+AL
Error of heatmap 0.85 0.76 0.63
Error of landmark 6.13 5.82 5.59

Table 8: Normalised pixel-to-pixel error (%) of heatmap estima-
tion, mean error (%) and faliure rate (%) of landmark prediction
on 300W Challenging Set for evaluation the relationship between
the quality of estimated boundary and final prediction.
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Figure 8: (a) Mean error (%) and failure rate (%) on 300W Chal-
lenging Subset. (b) Mean error (%) on 5 typical testing subset of
WFLW Dataset, i.e. Expression, Illumination, Makeup, Occlusion
and Blur Subset.

glass module without boundary feature (“HG/B”), hour-
glass module with boundary feature (“HG”) and consec-
utive convolutional layers with boundary feature (“CL”).
The comparison between “BL+HG” and “BL+HG/B” in-
dicates the effectiveness of boundary information fusion
rather than network structure changes. The comparison be-
tween “BL+HG” and “BL+CL” indicates the effectiveness
of the using hourglass structure design.

Message passing plays a vital role for heatmap quality
improvement when severe occlusions happen. As illustrated
in Fig. 8 (b) on Occlusion Subset of WFLW, message pass-
ing, which combines information from visible boundaries
and occluded ones, reduce the mean error over 11% rela-
tively.

Adversarial learning further improves the quality and
effectiveness of boundary heatmaps. As illustrated in Fig. 5,
heatmaps can be observed to be more focused and salience
when adversarial loss is added. To verify the effectiveness
of our landmark based boundary effectiveness discrimina-
tor, a baseline method using traditionally defined discrimi-
nator is tested on 300W Challenging Set. The failure rate is
reduced from 5.19% to 3.70%.

Relationship between boundary estimator and land-
marks regressor is evaluated by analyzing the quality of
estimated heatmap and final prediction accuracy. We re-
port the MSE of estimated heatmaps and corresponding
landmarks accuracy in Table 8. We observe that with
message passing (“HBL+MP”) and adversarial learning
(“HBL+AL”), the errors of estimated heatmaps are reduced
together with landmarks accuracy.



5. Conculsion
Unconstrained face alignment is an emerging topic. In

this paper, we present a novel use of facial boundary to de-
rive facial landmarks. We believe the reasoning of a unique
facial structure is the key to localise facial landmarks, since
human face does not include ambiguities. By estimating fa-
cial boundary, our method is capable of handling arbitrary
head poses as well as large shape, appearance, and occlu-
sion variations. Our experiment shows the great potential
of modeling facial boundary. The runtime of our algorithm
is 60ms on TITAN X GPU.
Acknowledgement This work was supported by The Na-
tional Key Research and Development Program of China
(Grand No.2017YFC1703300).
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